satiated$72160$ - vertaling naar italiaans
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

satiated$72160$ - vertaling naar italiaans

CONSUMER PREFERENCES PROPERTY
Locally nonsatiated; Locally non-satiated
  • Illustration of preferences that are locally nonsatiated but not strongly monotonic.

satiated      
adj. sazio, soddisfatto fino alla nausea

Definitie

Satiation

Wikipedia

Local nonsatiation

In microeconomics, the property of local nonsatiation (LNS) of consumer preferences states that for any bundle of goods there is always another bundle of goods arbitrarily close that is strictly preferred to it.

Formally, if X is the consumption set, then for any x X {\displaystyle x\in X} and every ε > 0 {\displaystyle \varepsilon >0} , there exists a y X {\displaystyle y\in X} such that y x ε {\displaystyle \|y-x\|\leq \varepsilon } and y {\displaystyle y} is strictly preferred to x {\displaystyle x} .

Several things to note are:

  1. Local nonsatiation is implied by monotonicity of preferences. However, as the converse is not true, local nonsatiation is a weaker condition.
  2. There is no requirement that the preferred bundle y contain more of any good – hence, some goods can be "bads" and preferences can be non-monotone.
  3. It rules out the extreme case where all goods are "bads", since the point x = 0 would then be a bliss point.
  4. Local nonsatiation can only occur either if the consumption set is unbounded or open (in other words, it is not compact) or if x is on a section of a bounded consumption set sufficiently far away from the ends. Near the ends of a bounded set, there would necessarily be a bliss point where local nonsatiation does not hold.